摘 要:提出一种基于动态聚类的个性化联邦学习方法来解决联邦学习下数据异构的问题。此方法将优化目标向量与凝聚聚类算法相结合,在保证节省计算资源的同时,将数据差异较大的客户端动态划分到不同的集群中。此(试读)...